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Part I

What is a moduli space?
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What is a moduli space?

Moduli spaces

Warning : In this talk, there is NO rigorous definition of moduli spaces!

We will ignore all technical details.

Roughly, a moduli space is a (topological, geometric, algebraic) space

whose points are in one to one correspondence with geometric objects of

one kind.
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What is a moduli space?

Toy examples

In R2, an oriented line segment is determined by two end points.

There is an one to one correspondence

{line segment in R2} ↔ {((x0, y0), (x1, y1))|x0, x1, y0, y1 ∈ R} ∼= R4

So the moduli space of oriented line segments in R2 is R4.

If we don’t want to allow ‘length zero segment’,

the moduli space M is R4 − {((x0, y0), (x0, y0))} ∼= R4 −∆ ∼= R4 − R2.

M is not only a set, but is a topological space.
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What is a moduli space?

Toy examples

Moreover, there is a universal family over moduli space M.

Define U ⊂ M × R2 ∼= R4 × R2 by

U = {(x0, y0, x1, y1, (1− t)x0 + tx1, (1− t)y0 + ty1)|t ∈ [0, 1]}

There is a natural map π : U → M defined by projection to first four

coordinates.

Q. Why U is a ‘universal family’?

A. For every point ((x0, y0), (x1, y1)) = p ∈ M,

π−1(p) = {((1− t)x0 + tx1, (1− t)y0 + ty1)|t ∈ [0, 1]} ⊂ R2,

the oriented line segment corresponded p!
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What is a moduli space?

Definition of moduli space

Definition

A (fine) moduli space of some geometric objects consists of a moduli

space M, a universal family U and a map π : U → M such that

1 there is one to one correspondence between points of M and

geometric objects we want to collect.

2 for every point p ∈ M, π−1(p) is the corresponded object.
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What is a moduli space?

Toy examples

How about non-oriented segments?

In this case, the moduli space of non-oriented line segments in R2 is

M ′ = (R4 −∆)/S2

Define an equivalence of oriented line segments as following:

l1, l2 ⊂ R2 are isomorphic if ∃ a translation ϕ : R2 → R2 such that

ϕ(l1) = l2.

Then we can assume the starting point of line segment is the origin.

So in this case, the moduli space M ′′ of oriented line segments in R2 up

to translation is

M ′′ = R2 − {(0, 0)}.
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What is a moduli space?

Toy examples

Q. What is the moduli space of unoriented line segments in R2 up to

translation?

A. (R2 − {(0, 0)})/S2.

Q. What is the moduli space of oriented line segments in R2 up to

isometry?

A. R>0.

Q. What is the moduli space of oriented line segments in R2 up to

affine transformation?

A. point.

Lesson : Equivalent relations between parameterized objects are very

important!
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What is a moduli space?

More examples

Fix a vector space V = Rn.

Geometric object want to parameterize : 1-dimensional subspace of V .

Q. What is the moduli space of 1-dimensional subspace of V ?

every v ∈ V − {0} determines a unique 1-dimensional subspace

L = 〈v〉 ⊂ V .

v , v ′ ∈ V − {0} determines the same subspace if ∃c ∈ R∗, v = cv ′.

⇒ the moduli space of 1-dimensional subspace of V is (V − {0})/R∗

= P(V ), the projective space!
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What is a moduli space?

More examples

Moreover, there is the universal family(in this case, universal subspace)

U over P(V ).

U = {([L], v)|v ∈ L} ⊂ P(V )× V

π : U → P(V ) is the natural projection.

For [L] ∈ P(V ), π−1([L]) = {([L], v)|v ∈ L} ∼= L.

So P(V ) with π : U → P(V ) is the fine moduli space of 1-dimensional

subspaces of V .

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 10 / 35



What is a moduli space?

More examples

Moreover, there is the universal family(in this case, universal subspace)

U over P(V ).

U = {([L], v)|v ∈ L} ⊂ P(V )× V

π : U → P(V ) is the natural projection.

For [L] ∈ P(V ), π−1([L]) = {([L], v)|v ∈ L} ∼= L.

So P(V ) with π : U → P(V ) is the fine moduli space of 1-dimensional

subspaces of V .

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 10 / 35



What is a moduli space?

More examples

More generally, we can think the moduli space of k-dimensional

subspaces of V for 1 ≤ k ≤ n − 1.

The moduli space of this moduli problem is called Grassmannian

G (k ,V ).

G (1,V ) ∼= P(V ) by definition.

Exercise : G (n − 1,V ) ∼= P(V ).

Sketch : Fix a positive definite inner product on V .

Define a map

P(V ) → G (n − 1,V )

L 7→ L⊥

Check this map is bijective.
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What is a moduli space?

Some technical issues

If we study moduli spaces in algebraic geometry, there are two important

assumptions.

Usually, we use algebraic closed field C instead of R.

We hardly use affine space(Cn).

Usually we use projective space Pn.

It is a compactification of Cn.
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What is a moduli space?

Some famous moduli spaces

Mg : moduli space of nonsingular curves(Riemann surfaces) of genus g

up to isomorphism.

If g ≥ 2, it is well-known that the dimension of Mg is 3g − 3.

Mg ,n : moduli space of nonsingular curves of genus g with n distinct

points, up to isomorphism.

If (1) g ≥ 2 or (2) g = 1 and n ≥ 1 or (3) g = 0 and n ≥ 3,

then the dimension is 3g − 3 + n.

Mg (Pr , d) : moduli space of nonsingular curves of genus g in a fixed

projective space Pr with degree d .

C : a nonsingular curve of genus g ≥ 2.

M(C , r , α) : moduli space of stable vector bundles of rank r and first

Chern class α.
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Part II

Why we study moduli spaces?
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Why we study moduli spaces?

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit

higher dimensional variety.

For example, in C1000, a zero set of 1, 000, 000 polynomials defines an

algebraic object...

But what is the dimension of it?

Is it smooth? compact? connected? nonempty?

In many cases, a moduli space of some algebraic objects has an

algebraic structure(become variety, scheme, stack...). And there are

machineries to get some geometric information of moduli

spaces(dimension, smoothness, compactness, ...).

So moduli spaces gives a plenty of examples of relatively concrete but

not obvious higher dimensional algebraic objects.
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Why we study moduli spaces?

2. Answers for classical geometric questions

We recall some classical geometric questions.

Question

How many curves satisfying given conditions are?

Examples:

How many lines in plane across given 2 points?

How many conics in plane across given 5 points?

How many lines in 3-dim space intersect given 4 lines?

Suprisingly, the answer of last question is neither of 0, 1 nor ∞.
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Why we study moduli spaces?

Lines in P3

Consider the set of all lines in P3

= the set of all pair of linearly independent homogeneous linear

polynomials

= the set of all 2-dim subspaces of V ∼= C4

= Grassmannian G (2,V ).

U := {(L, v) ∈ G (2,V )× V |v ∈ L} · · · universal family.

U∗ := {L, v) ∈ G (2,V )× V |v ∈ L, v 6= 0} ⊂ U

Exist two natural maps:

π : U∗ → G (2,V )

(L, v) 7→ L

f : U∗ → V → P3

(L, v) 7→ v 7→ 〈v〉
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Why we study moduli spaces?

Lines in P3

U∗
f //

π
��

P3

G (2,V )

Li , 1 ≤ i ≤ 4: lines in P3.

f −1(Li ) : set of pairs (L, v) such that v ∈ Li and v ∈ L.

= set of pairs (L, v) such that v ∈ L ∩ Li .

π(f −1(Li )) : set of lines in P3 meets Li .

|
4⋂

i=1

π(f −1(Li ))|

is what we want!
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Why we study moduli spaces?

Lines in P3

Change these things into the language of cohomology:

Cohomology ring of Grassmannian is well-known.

σi : cohomology class corresponded to π(f −1(Li )).

In cohomology ring of G (2,V ), σ1 = σ2 = σ3 = σ4.

|
4⋂

i=1

π(f −1(Li ))| =

∫
G(2,V )

σ41 = 2.

There exist exactly 2 lines in P3 meet 4 general lines.
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Why we study moduli spaces?

Lines on a Calabi-Yau 3-fold

Definition

A quintic threefold is a nonsingular threefold in P4 defined by single

homogeneous equation of degree 5.

This is an example of Calabi-Yau threefold appears in string theory.

Question

How many lines in general quintic threefold?
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Why we study moduli spaces?

Lines on a Calabi-Yau 3-fold

Consider the moduli space of lines in P4 : Gr(2,V ) where V ∼= C5.

Let U be the universal vector space over Gr(2,V ),

and let U∗ be the complement of zero section.

We have a following diagram

U∗
f //

π
��

P4

G (2,V ).

as before.
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Why we study moduli spaces?

Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on Gr(2,V ) such that

for L ∈ Gr(2,V ), the fiber WL is the vector space of degree 5

homogeneous polynomials over L ∼= P1

· · · rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous

polynomial g of degree 5.

Then for each line L ⊂ P4, we can restrict g to the line L and get an

element gL of WL.

Moreover, gL = 0 iff L is in the zero set Z (g) = X .

So we have a section s of W , and the number of lines in X = |Z (s)|.
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Why we study moduli spaces?

Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

P(U)
f //

π

��

P4

G (2,V ).

O(5) : a line bundle such that one of section is g .

W = π∗f
∗O(5).

The number |Z (s)| is equal to∫
G(2,V )

c6(π∗f
∗O(5))

By using Riemann-Roch theorem, we can compute this number : 2, 875.
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Why we study moduli spaces?

Lines on a Calabi-Yau 3-fold

Clemens’ conjecture

Let X be a general quintic threefold. For every d ∈ N, there exist only

finitely many rational curves of degree d on X .

It is proved for n ≤ 7.

degree number of curves

1 2,875

2 609,250

3 317,206,375

4 242,467,530,000

5 22,930,588,887,625

6 248,249,742,118,022,000

7 295,091,050,570,845,659,250
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Why we study moduli spaces?

3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1.

Conversely, every nonsingular genus 1 curve is isomorphic to a plane

cubic curve.

Moreover, there is an universal equation with a free variable for genus 1

curve.

y2 = x(x − 1)(x − a)

This is a universal equation in the sense that

for any genus 1 nonsingular curve C , we can find a ∈ C such that C

is isomorphic to plane cubic curve defined by y2 = x(x − 1)(x − a).

except a 6= 0, 1, the equation defines a nonsingular genus 1 curve.

For genus 2, the following equation is a universal equation.

y2 = x6 + a5x5 + · · ·+ a1x + a0.
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Why we study moduli spaces?

Existence of almost universal equations

Question

For any genus g, can we find a universal(or an almost universal)

equation(or equations) with almost free variable for genus g curves?

Theorem

If g ≥ 22, then it is impossible to construct almost universal equations.

This is an immediate corollary of following theorem:

Theorem (Harris-Mumford, Farkas)

For g ≥ 22, the moduli space Mg is of general type.
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Why we study moduli spaces?

4. Essential elements in modern mathematics and physics

For a smooth projective variety X , we can construct huge ring structure

QH∗(X ), called quantum cohomology.

It contains all informations of usual cohomology ring H∗(X ), and in

some sense, QH∗(X ) is a deformation or twisting of H∗(X ).

For the construction of QH∗(X ), we need the intersection theory of

moduli space of stable maps M0,n(X , β) · · · Gromov-Witten invariant.

The Gromov-Witten invariant and quantum cohomology are parts of

superstring theory.
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Part III

Moduli spaces and birational geometry
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Moduli spaces and birational geometry

Compactification of moduli spaces

Many interesting moduli spaces are not compact.

Ex) Mg ,Mg ,n,Mg (Pr , d), · · ·

We want to compactify our moduli spaces.

Also, we want this compactified space is also a moduli space for some

moduli problem.

Example :

1) Mg : moduli space of curves of (arithmetic) genus g with nodal

singularities which has finite automorphism group.
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Moduli spaces and birational geometry

Compactification of moduli spaces

2) Mg ,n moduli space of curves of (arithmetic) genus g with n distinct

smooth points, with nodal singularities which has finite automorphism

group.

3) Compactify Mg (Pr , d) · · · regard C ⊂ Pr as an injective morphism

f : C ↪→ Pr from smooth curve C of genus g .

Mg (Pr , d) : moduli space of maps from a nodal curve of (arithmetic)

genus g to Pr (called moduli space of stable maps), such that

i) degree of map is d ,

ii) automorphism group of map is finite.

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 30 / 35



Moduli spaces and birational geometry

Compactification of moduli spaces

2) Mg ,n moduli space of curves of (arithmetic) genus g with n distinct

smooth points, with nodal singularities which has finite automorphism

group.

3) Compactify Mg (Pr , d) · · · regard C ⊂ Pr as an injective morphism

f : C ↪→ Pr from smooth curve C of genus g .

Mg (Pr , d) : moduli space of maps from a nodal curve of (arithmetic)

genus g to Pr (called moduli space of stable maps), such that

i) degree of map is d ,

ii) automorphism group of map is finite.
Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 30 / 35



Moduli spaces and birational geometry

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix A = (a1, a2, · · · , an), where ai ∈ Q ∩ (0, 1].

Mg ,A = moduli space of genus g curve C with n smooth points

p1, p2, · · · , pn such that

i) each pi have weight ai .

ii) for J ⊂ {1, 2, · · · , n},

pj1 = pj2 = · · · = pjk for ji ∈ J ⇒
∑
j∈J

aj ≤ 1

iii) ωC + a1p1 + · · ·+ anpn is ample.(it guarantees the finiteness of

automorphism group.)

· · · called moduli space of weighted stable curves.

gives different compactification of Mg ,n.
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Moduli spaces and birational geometry

Compactification of moduli spaces

Question

What are the relations between different compactifications?

In our moduli problems, Mg ,n and Mg ,A, we know that every

compactifications have same (open) dense subvariety Mg ,n.

Definition

We say two algebraic varieties M1,M2 are birational if they have open

dense subsets U1,U2 respectively, such that U1
∼= U2.

M1 ⊃ U1
∼= U2 ⊂ M2

1) Is there any morphism Mg ,A → Mg ,B for two different weights A, B?

2) Is there any other construction of Mg ,A?
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Moduli spaces and birational geometry

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.

dim 1 case : done in 19th century, Answer : tgMg .

If dim 2, then for any X , by using algebro-geometrical surgery(called

blow-up), we can construct more complicate variety X̃ .

But if we know X , then we know everything about X̃ .

Definition

A nonsingular variety X is called minimal if X is not a blow-up of

another variety X ′.

So we want to classify minimal surfaces.

There are many works about classification of minimal surfaces(Enriques,

Kodaira, ...).
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Moduli spaces and birational geometry

Digression to minimal model program

Definition

The minimal model program(MMP) is an algorithm to find a minimal

variety(called minimal model) from given variety.

For higher dimensional case, there are some technical issues:

1 We have to allow (some mild) singularities to get a minimal variety.

2 Because of a technical reason, we consider a minimal model of pair

(X ,D) where X is a variety and D is a Q-linear combination of

codimension 1 subvarieties.

3 There is another kind of surgery, called flip.

4 The existence of minimal model is still unknown except some

special cases(for example, 3-folds, log Fano, ...).

5 If a minimal model exists, there is a unique (log) canonical model.
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Moduli spaces and birational geometry

Minimal model program for moduli spaces

Question

Find log canonical models for given moduli spaces!

Consider M0,n.

Let D be the subspace corresponded to singular curves.

Theorem (Alexeev-Swinarski, Kiem-M)

Let α be a rational number satisfying 2
n−1 < α ≤ 1. Then the log

canonical model M0,n(α) for (M0,n, αD) satisfies the following:

1 If 2
b n
2
c+1 < α ≤ 1, then M0,n(α) ∼= M0,Aα where

Aα = (εα, εα, · · · , εα).

2 If 2
n−1 < α ≤ 2

b n
2
c+1 , then M0,n(α) ∼= (P1)n//SL(2). where // means

some kind of algebraic group quotient(GIT quotient).

Thank you!
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