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What is a moduli space?

Moduli spaces

Warning : In this talk, there is NO rigorous definition of moduli spaces!
We will ignore all technical details.
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What is a moduli space?

Moduli spaces

Warning : In this talk, there is NO rigorous definition of moduli spaces!
We will ignore all technical details.

Roughly, a moduli space is a (topological, geometric, algebraic) space

whose points are in one to one correspondence with geometric objects of
one kind.

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 3/ 35



What is a moduli space?

Toy examples

In R?, an oriented line segment is determined by two end points.
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What is a moduli space?

Toy examples

In R?, an oriented line segment is determined by two end points.
There is an one to one correspondence

{line Segment in R2} A {((X07y0)7 (X17Y1))|X07X17}/07}/1 € R} = R4
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What is a moduli space?

Toy examples

In R?, an oriented line segment is determined by two end points.

There is an one to one correspondence
{line Segment in R2} — {((X07y0)7 (X17Y1))|X07X17}/07}/1 € R} = R4

So the moduli space of oriented line segments in R? is R*.
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What is a moduli space?
Toy examples

In R?, an oriented line segment is determined by two end points.
There is an one to one correspondence

{line Segment in R2} A {((X07y0)7 (X17Y1))|X07X17}/07}/1 € R} = R4

So the moduli space of oriented line segments in R? is R*.

If we don't want to allow ‘length zero segment’,
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What is a moduli space?
Toy examples

In R?, an oriented line segment is determined by two end points.
There is an one to one correspondence

{line Segment in R2} A {((X07y0)7 (X17Y1))|X07X17}/07}/1 € R} = R4

So the moduli space of oriented line segments in R? is R*.

If we don't want to allow ‘length zero segment’,
the moduli space M is R* — {((x0,¥0), (x0,¥0))} = R* — A = R* — R2,
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What is a moduli space?
Toy examples

In R?, an oriented line segment is determined by two end points.
There is an one to one correspondence

{line Segment in R2} A {((X07y0)7 (X17Y1))|X07X17}/07}/1 € R} = R4

So the moduli space of oriented line segments in R? is R*.

If we don't want to allow ‘length zero segment’,
the moduli space M is R* — {((x0,¥0), (x0,¥0))} = R* — A = R* — R2,

M is not only a set, but is a topological space.
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What is a moduli space?

Toy examples

Moreover, there is a universal family over moduli space M.
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What is a moduli space?
Toy examples

Moreover, there is a universal family over moduli space M.

Define U C M x R? = R* x R? by
U = {(x0, y0,x1,¥1, (1 — t)xo + tx1, (1 — t)yo + ty1)|t € [0,1]}

There is a natural map 7 : U — M defined by projection to first four

coordinates.
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What is a moduli space?
Toy examples

Moreover, there is a universal family over moduli space M.
Define U C M x R? = R* x R? by
U = {(x0, Y0, x1, y1, (1 = t)x0 + tx1, (1 — t)yo + ty1)[t € [0, 1]}

There is a natural map 7 : U — M defined by projection to first four

coordinates.

Q. Why U is a ‘universal family'?
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What is a moduli space?
Toy examples

Moreover, there is a universal family over moduli space M.
Define U C M x R? = R* x R? by
U = {(x0, Y0, x1, y1, (1 = t)x0 + tx1, (1 — t)yo + ty1)[t € [0, 1]}

There is a natural map 7 : U — M defined by projection to first four
coordinates.

Q. Why U is a ‘universal family'?

A. For every point ((xo,0), (x1,y1)) = p € M,
7 p) = {((1 — t)x0 + tx1, (1 — t)yo + ty1)|t € [0,1]} C R?,
the oriented line segment corresponded p!
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What is a moduli space?

Definition of moduli space

Definition
A (fine) moduli space of some geometric objects consists of a moduli
space M, a universal family U and a map 7 : U — M such that

@ there is one to one correspondence between points of M and
geometric objects we want to collect.

@ for every point p € M, 7=%(p) is the corresponded object.
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What is a moduli space?

Toy examples

How about non-oriented segments?
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What is a moduli space?

Toy examples

How about non-oriented segments?
In this case, the moduli space of non-oriented line segments in R? is

M = (R* — A)/S;
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What is a moduli space?
Toy examples

How about non-oriented segments?
In this case, the moduli space of non-oriented line segments in R? is

M = (R* — A)/S;

Define an equivalence of oriented line segments as following:
li, b C R? are isomorphic if 3 a translation Y R? — R? such that

¢(h) = h.
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What is a moduli space?
Toy examples

How about non-oriented segments?
In this case, the moduli space of non-oriented line segments in R? is

M = (R* — A)/S;

Define an equivalence of oriented line segments as following:

li, b C R? are isomorphic if 3 a translation Y R? — R? such that

o(h) = h.

Then we can assume the starting point of line segment is the origin.

So in this case, the moduli space M of oriented line segments in R? up

to translation is
M" =R? — {(0,0)}.
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What is a moduli space?

Toy examples

Q. What is the moduli space of unoriented line segments in R? up to
translation?
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What is a moduli space?
Toy examples

Q. What is the moduli space of unoriented line segments in R? up to
translation?

A. (R? —{(0,0)})/S.

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 8 / 35



What is a moduli space?
Toy examples

Q. What is the moduli space of unoriented line segments in R? up to
translation?

A. (R? —{(0,0)})/S.

Q. What is the moduli space of oriented line segments in R? up to
isometry?
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What is a moduli space?
Toy examples

Q. What is the moduli space of unoriented line segments in R? up to
translation?

A. (R? —{(0,0)})/S.

Q. What is the moduli space of oriented line segments in R? up to
isometry?
A. R>0.
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What is a moduli space?
Toy examples

Q. What is the moduli space of unoriented line segments in R? up to
translation?

A. (R? —{(0,0)})/S.

Q. What is the moduli space of oriented line segments in R? up to
isometry?
A. R>0.

Q. What is the moduli space of oriented line segments in R? up to
affine transformation?
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What is a moduli space?
Toy examples

Q. What is the moduli space of unoriented line segments in R? up to
translation?

A. (R? —{(0,0)})/S.

Q. What is the moduli space of oriented line segments in R? up to
isometry?
A. R>0.

Q. What is the moduli space of oriented line segments in R? up to
affine transformation?
A. point.

Lesson : Equivalent relations between parameterized objects are very
important!
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What is a moduli space?

More examples

Fix a vector space V = R".

Geometric object want to parameterize : 1-dimensional subspace of V.
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What is a moduli space?

More examples

Fix a vector space V = R".
Geometric object want to parameterize : 1-dimensional subspace of V.

Q. What is the moduli space of 1-dimensional subspace of V?
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What is a moduli space?
More examples

Fix a vector space V = R".
Geometric object want to parameterize : 1-dimensional subspace of V.
Q. What is the moduli space of 1-dimensional subspace of V?

e every v € V — {0} determines a unique 1-dimensional subspace
L=(v)CV.
/

e v,V € V—{0} determines the same subspace if 3c € R*, v = ¢V
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What is a moduli space?
More examples

Fix a vector space V = R".
Geometric object want to parameterize : 1-dimensional subspace of V.
Q. What is the moduli space of 1-dimensional subspace of V?

e every v € V — {0} determines a unique 1-dimensional subspace
L=(v)CV.
/

e v,V € V—{0} determines the same subspace if 3c € R*, v = ¢V

= the moduli space of 1-dimensional subspace of V is (V — {0})/R*
= P(V), the projective spacel!
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What is a moduli space?
More examples

Moreover, there is the universal family(in this case, universal subspace)
U over P(V).

U={(L],v)|veLl}cP(V)xV

m: U — P(V) is the natural projection.
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What is a moduli space?
More examples

Moreover, there is the universal family(in this case, universal subspace)
U over P(V).

U={(L],v)lvel}c P(V)xV
m: U — P(V) is the natural projection.
For [L] € P(V), #7Y([L]) = {([L],v)|v € L} = L.

So P(V) with m: U — P(V) is the fine moduli space of 1-dimensional
subspaces of V.
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What is a moduli space?

More examples

More generally, we can think the moduli space of k-dimensional
subspaces of V for 1 < k< n-—1.
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What is a moduli space?
More examples

More generally, we can think the moduli space of k-dimensional
subspaces of V for 1 < k< n-—1.

The moduli space of this moduli problem is called Grassmannian
G(k,V).
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What is a moduli space?
More examples

More generally, we can think the moduli space of k-dimensional
subspaces of V for 1 < k< n-—1.

The moduli space of this moduli problem is called Grassmannian
G(k,V).

G(1,V) =
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What is a moduli space?
More examples

More generally, we can think the moduli space of k-dimensional
subspaces of V for 1 < k< n-—1.

The moduli space of this moduli problem is called Grassmannian
G(k,V).

G(1,V) = P(V) by definition.
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What is a moduli space?
More examples

More generally, we can think the moduli space of k-dimensional
subspaces of V for 1 < k< n-—1.

The moduli space of this moduli problem is called Grassmannian
G(k,V).

G(1,V) = P(V) by definition.
Exercise : G(n—1,V) = P(V).
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What is a moduli space?
More examples

More generally, we can think the moduli space of k-dimensional
subspaces of V for 1 < k< n-—1.

The moduli space of this moduli problem is called Grassmannian
G(k,V).

G(1,V) = P(V) by definition.

Exercise : G(n—1,V) = P(V).
Sketch : Fix a positive definite inner product on V.
Define a map

P(V) — G(n—1,V)
L +— Lt

Check this map is bijective.
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What is a moduli space?
Some technical issues

If we study moduli spaces in algebraic geometry, there are two important
assumptions.

@ Usually, we use algebraic closed field C instead of R.

e We hardly use affine space(C").
Usually we use projective space P”.
It is a compactification of C".

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 12 / 35



What is a moduli space?

Some famous moduli spaces

Mg : moduli space of nonsingular curves(Riemann surfaces) of genus g

up to isomorphism.
If g > 2, it is well-known that the dimension of M, is 3g — 3.
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What is a moduli space?

Some famous moduli spaces

Mg : moduli space of nonsingular curves(Riemann surfaces) of genus

up to isomorphism.
If g > 2, it is well-known that the dimension of M, is 3g — 3.

Mg n : moduli space of nonsingular curves of genus g with n distinct

points, up to isomorphism.
If (1) g>2or(2)g=1landn>1or(3) g=0and n>3,
then the dimension is 3¢ — 3 + n.
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What is a moduli space?

Some famous moduli spaces

Mg : moduli space of nonsingular curves(Riemann surfaces) of genus g
up to isomorphism.
If g > 2, it is well-known that the dimension of M, is 3g — 3.

Mg n : moduli space of nonsingular curves of genus g with n distinct
points, up to isomorphism.

If (1) g>2or(2)g=1landn>1or(3) g=0and n>3,

then the dimension is 3¢ — 3 + n.

Mg (P", d) : moduli space of nonsingular curves of genus g in a fixed
projective space P" with degree d.
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What is a moduli space?

Some famous moduli spaces

Mg : moduli space of nonsingular curves(Riemann surfaces) of genus g
up to isomorphism.
If g > 2, it is well-known that the dimension of M, is 3g — 3.

Mg n : moduli space of nonsingular curves of genus g with n distinct
points, up to isomorphism.

If (1) g>2or(2)g=1landn>1or(3) g=0and n>3,

then the dimension is 3¢ — 3 + n.

Mg (P", d) : moduli space of nonsingular curves of genus g in a fixed
projective space P" with degree d.

C : a nonsingular curve of genus g > 2.
M(C, r,a) : moduli space of stable vector bundles of rank r and first
Chern class a.
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Part 1l

Why we study moduli spaces?
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Why we study moduli spaces?

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit
higher dimensional variety.
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Why we study moduli spaces?

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit
higher dimensional variety.

For example, in C190°

algebraic object...
But what is the dimension of it?

, a zero set of 1,000,000 polynomials defines an

Is it smooth? compact? connected? nonempty?
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Why we study moduli spaces?

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit
higher dimensional variety.

For example, in C109 3 zero set of 1,000,000 polynomials defines an
algebraic object...

But what is the dimension of it?

Is it smooth? compact? connected? nonempty?

In many cases, a moduli space of some algebraic objects has an
algebraic structure(become variety, scheme, stack...). And there are
machineries to get some geometric information of moduli
spaces(dimension, smoothness, compactness, ...).

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 15 / 35



Why we study moduli spaces?

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit
higher dimensional variety.

For example, in C109 3 zero set of 1,000,000 polynomials defines an
algebraic object...

But what is the dimension of it?

Is it smooth? compact? connected? nonempty?

In many cases, a moduli space of some algebraic objects has an
algebraic structure(become variety, scheme, stack...). And there are
machineries to get some geometric information of moduli
spaces(dimension, smoothness, compactness, ...).

So moduli spaces gives a plenty of examples of relatively concrete but
not obvious higher dimensional algebraic objects.
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Why we study moduli spaces?

2. Answers for classical geometric questions

We recall some classical geometric questions.

How many curves satisfying given conditions are? \
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Why we study moduli spaces?

2. Answers for classical geometric questions

We recall some classical geometric questions.

How many curves satisfying given conditions are?

Examples:

@ How many lines in plane across given 2 points?

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 16 / 35



Why we study moduli spaces?

2. Answers for classical geometric questions

We recall some classical geometric questions.

How many curves satisfying given conditions are?

Examples:

@ How many lines in plane across given 2 points?

@ How many conics in plane across given 5 points?
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Why we study moduli spaces?

2. Answers for classical geometric questions

We recall some classical geometric questions.

How many curves satisfying given conditions are?

Examples:

@ How many lines in plane across given 2 points?
@ How many conics in plane across given 5 points?

@ How many lines in 3-dim space intersect given 4 lines?
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Why we study moduli spaces?

2. Answers for classical geometric questions

We recall some classical geometric questions.

How many curves satisfying given conditions are?

Examples:

@ How many lines in plane across given 2 points?
@ How many conics in plane across given 5 points?

@ How many lines in 3-dim space intersect given 4 lines?

Suprisingly, the answer of last question is neither of 0, 1 nor oc.
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Why we study moduli spaces?

Lines in P3

Consider the set of all lines in P3
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Why we study moduli spaces?

Lines in P3

Consider the set of all lines in P3
= the set of all pair of linearly independent homogeneous linear
polynomials
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Why we study moduli spaces?

Lines in P3

Consider the set of all lines in P3

= the set of all pair of linearly independent homogeneous linear
polynomials

= the set of all 2-dim subspaces of V = C*
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Why we study moduli spaces?

Lines in P3

Consider the set of all lines in P3

= the set of all pair of linearly independent homogeneous linear
polynomials

= the set of all 2-dim subspaces of V = C*

= Grassmannian G(2, V).
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Why we study moduli spaces?
. . 3
Lines in PP

Consider the set of all lines in P3

= the set of all pair of linearly independent homogeneous linear
polynomials

= the set of all 2-dim subspaces of V = C*

= Grassmannian G(2, V).

U:={(L,v)e G(2,V)x V|vel} - - universal family.
U :={Lv)e G2,V)x VlvelLv#0}CU
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Why we study moduli spaces?
. . 3
Lines in PP

Consider the set of all lines in P3

= the set of all pair of linearly independent homogeneous linear
polynomials

= the set of all 2-dim subspaces of V = C*

= Grassmannian G(2, V).

U:={(L,v) e G(2,V)x V|vel} - - universal family.
U :={Lv)e G2,V)x VlvelLv#0}CU
Exist two natural maps:

T U — G(2,V)
(Liv) — L

f: U = V-P3
(Lyv) = v (v)
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Why we study moduli spaces?

Lines in P3
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Why we study moduli spaces?

Lines in P3

Li, 1 <i<4: lines in P3,
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Why we study moduli spaces?
. . 3
Lines in PP

U* % P3

|
G(2,V)
< i < 4: lines in P3.

1
L(L;) : set of pairs (L,v) such that v € L; and v € L.
= set of pairs (L, v) such that v € LN L;.

Li7
-
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Why we study moduli spaces?
. . 3
Lines in PP

U* % P3

|

G(2,V)

1 <i<4: lines in P3.

L(L;) : set of pairs (L,v) such that v € L; and v € L.
= set of pairs (L, v) such that v € LN L;.

m(f71(L;)) : set of lines in P3 meets L;.

Li7
-
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Why we study moduli spaces?
. . 3
Lines in PP

U* % P3

|

G(2,V)

1 <i<4: lines in P3.

L(L;) : set of pairs (L,v) such that v € L; and v € L.
= set of pairs (L, v) such that v € LN L;.

m(f71(L;)) : set of lines in P3 meets L;.

Li7
-

is what we want!
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Why we study moduli spaces?

Lines in P3

Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.
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Why we study moduli spaces?
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Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.

oj: cohomology class corresponded to m(f~1(L;)).
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Why we study moduli spaces?

Lines in P3

Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.

oj: cohomology class corresponded to m(f~1(L;)).

In cohomology ring of G(2,V), 01 = 02 = 03 = 04.
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Why we study moduli spaces?
. . 3
Lines in PP

Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.

oj: cohomology class corresponded to m(f~1(L;)).
In cohomology ring of G(2,V), 01 = 02 = 03 = 04.
4

) A(F (L)) = / =2

There exist exactly 2 lines in P3 meet 4 general lines.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Definition

A quintic threefold is a nonsingular threefold in P* defined by single
homogeneous equation of degree 5.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Definition

A quintic threefold is a nonsingular threefold in P* defined by single
homogeneous equation of degree 5.

This is an example of Calabi-Yau threefold appears in string theory.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Definition

A quintic threefold is a nonsingular threefold in P* defined by single
homogeneous equation of degree 5.

This is an example of Calabi-Yau threefold appears in string theory.

How many lines in general quintic threefold?
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Why we study moduli spaces?

Lines on a Calabi-Yau 3-fold

Consider the moduli space of lines in P* : Gr(2, V) where V = C°.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Consider the moduli space of lines in P* : Gr(2, V) where V = C°.
Let U be the universal vector space over Gr(2, V),
and let U* be the complement of zero section.

We have a following diagram

U ———p*

G(2, V).

as before.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on Gr(2, V) such that
for L € Gr(2, V), the fiber W, is the vector space of degree 5
homogeneous polynomials over L = P!
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on Gr(2, V) such that
for L € Gr(2, V), the fiber W, is the vector space of degree 5
homogeneous polynomials over L = P!

- rank 6.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on Gr(2, V) such that
for L € Gr(2, V), the fiber W, is the vector space of degree 5

homogeneous polynomials over L = P!
- rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous
polynomial g of degree 5.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on Gr(2, V) such that
for L € Gr(2, V), the fiber W, is the vector space of degree 5
homogeneous polynomials over L = P!

- rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous
polynomial g of degree 5.
Then for each line L C P*, we can restrict g to the line L and get an

element g of W;.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on Gr(2, V) such that
for L € Gr(2, V), the fiber W, is the vector space of degree 5
homogeneous polynomials over L = P!

- rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous

polynomial g of degree 5.
Then for each line L C P*, we can restrict g to the line L and get an

element g of W;.
Moreover, gi = 0 iff L is in the zero set Z(g) = X.
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Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on Gr(2, V) such that
for L € Gr(2, V), the fiber W, is the vector space of degree 5

homogeneous polynomials over L = P!
- rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous
polynomial g of degree 5.

Then for each line L C P*, we can restrict g to the line L and get an
element g of W;.

Moreover, gi = 0 iff L is in the zero set Z(g) = X.

So we have a section s of W, and the number of lines in X = [Z(s)].
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Algebraic construction of W :
P(U) —— p*
G(2,V).

O(5) : a line bundle such that one of section is g.
W = m.f*O(5).
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

P(U) ——p4

G(2,V).
O(5) : a line bundle such that one of section is g.

W = m.f*O(5).
The number |Z(s)| is equal to

/ co(maFO(5))
G2,V)
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

P(U) —— p*
G(2,V).
O(5) : a line bundle such that one of section is g.

W = m.f*O(5).
The number |Z(s)| is equal to

/ co(maFO(5))
G2,V)

By using Riemann-Roch theorem, we can compute this number : 2, 875.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Clemens’ conjecture

Let X be a general quintic threefold. For every d € N, there exist only
finitely many rational curves of degree d on X.
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Why we study moduli spaces?
Lines on a Calabi-Yau 3-fold

Clemens’ conjecture

Let X be a general quintic threefold. For every d € N, there exist only
finitely many rational curves of degree d on X.

It is proved for n < 7.

degree number of curves

2,875

609,250

317,206,375

242,467,530,000
22,930,588,887,625
248,249,742,118,022,000
295,091,050,570,845,659,250

N[OOI WIN| -
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Why we study moduli spaces?
3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1.
Conversely, every nonsingular genus 1 curve is isomorphic to a plane
cubic curve.
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cubic curve.

Moreover, there is an universal equation with a free variable for genus 1

curve.
y?2 =x(x—1)(x — a)
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Why we study moduli spaces?
3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1.
Conversely, every nonsingular genus 1 curve is isomorphic to a plane
cubic curve.
Moreover, there is an universal equation with a free variable for genus 1
curve.

y?2 =x(x—1)(x — a)
This is a universal equation in the sense that

o for any genus 1 nonsingular curve C, we can find a € C such that C
is isomorphic to plane cubic curve defined by y? = x(x — 1)(x — a).

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 25 / 35



Why we study moduli spaces?
3. Can learn about the objects parameterized
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Conversely, every nonsingular genus 1 curve is isomorphic to a plane
cubic curve.
Moreover, there is an universal equation with a free variable for genus 1
curve.

y?2 =x(x—1)(x — a)
This is a universal equation in the sense that

o for any genus 1 nonsingular curve C, we can find a € C such that C
is isomorphic to plane cubic curve defined by y? = x(x — 1)(x — a).
@ except a # 0,1, the equation defines a nonsingular genus 1 curve.
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Why we study moduli spaces?
3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1.
Conversely, every nonsingular genus 1 curve is isomorphic to a plane

cubic curve.

Moreover, there is an universal equation with a free variable for genus 1

curve.
y?2 =x(x—1)(x — a)

This is a universal equation in the sense that

o for any genus 1 nonsingular curve C, we can find a € C such that C
is isomorphic to plane cubic curve defined by y? = x(x — 1)(x — a).
@ except a # 0,1, the equation defines a nonsingular genus 1 curve.

For genus 2, the following equation is a universal equation.

y2:x6+a5x5+-~+alx+ao.
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Why we study moduli spaces?
Existence of almost universal equations

For any genus g, can we find a universal(or an almost universal)

equation(or equations) with almost free variable for genus g curves?

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 26 / 35



Why we study moduli spaces?
Existence of almost universal equations

For any genus g, can we find a universal(or an almost universal)

equation(or equations) with almost free variable for genus g curves?

If g > 22, then it is impossible to construct almost universal equations.

This is an immediate corollary of following theorem:
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Why we study moduli spaces?
Existence of almost universal equations

For any genus g, can we find a universal(or an almost universal)

equation(or equations) with almost free variable for genus g curves?

If g > 22, then it is impossible to construct almost universal equations.

This is an immediate corollary of following theorem:

Theorem (Harris-Mumford, Farkas)

For g > 22, the moduli space M, is of general type.
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Why we study moduli spaces?
4. Essential elements in modern mathematics and physics

For a smooth projective variety X, we can construct huge ring structure
QH*(X), called quantum cohomology.
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It contains all informations of usual cohomology ring H*(X), and in
some sense, QH*(X) is a deformation or twisting of H*(X).
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Why we study moduli spaces?
4. Essential elements in modern mathematics and physics

For a smooth projective variety X, we can construct huge ring structure
QH*(X), called quantum cohomology.

It contains all informations of usual cohomology ring H*(X), and in
some sense, QH*(X) is a deformation or twisting of H*(X).

For the construction of QH*(X), we need the intersection theory of
moduli space of stable maps Mg ,(X,3) -+ Gromov-Witten invariant.
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Why we study moduli spaces?
4. Essential elements in modern mathematics and physics

For a smooth projective variety X, we can construct huge ring structure

QH*(X), called quantum cohomology.
It contains all informations of usual cohomology ring H*(X), and in
some sense, QH*(X) is a deformation or twisting of H*(X).

For the construction of QH*(X), we need the intersection theory of
moduli space of stable maps Mg ,(X,3) -+ Gromov-Witten invariant.

The Gromov-Witten invariant and quantum cohomology are parts of

superstring theory.
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Part 11

Moduli spaces and birational geometry
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Moduli spaces and birational geometry

Compactification of moduli spaces

Many interesting moduli spaces are not compact.
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Moduli spaces and birational geometry

Compactification of moduli spaces

Many interesting moduli spaces are not compact.

Ex) Mg, Mg, Mg(P", d),- --

We want to compactify our moduli spaces.
Also, we want this compactified space is also a moduli space for some

moduli problem.
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Moduli spaces and birational geometry

Compactification of moduli spaces

Many interesting moduli spaces are not compact.
Ex) Mg, Mg n, Mg(P", d),---

We want to compactify our moduli spaces.
Also, we want this compactified space is also a moduli space for some

moduli problem.

Example :
1) Mg : moduli space of curves of (arithmetic) genus g with nodal
singularities which has finite automorphism group.
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Moduli spaces and birational geometry

Compactification of moduli spaces

2) Mg, moduli space of curves of (arithmetic) genus g with n distinct
smooth points, with nodal singularities which has finite automorphism

group.
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Moduli spaces and birational geometry

Compactification of moduli spaces

2) Mg , moduli space of curves of (arithmetic) genus g with n distinct
smooth points, with nodal singularities which has finite automorphism

group.

3) Compactify Mg(P",d) --- regard C C P’ as an injective morphism
f: C < P from smooth curve C of genus g.

Mg(P",d) : moduli space of maps from a nodal curve of (arithmetic)
genus g to IP" (called moduli space of stable maps), such that

i) degree of map is d,

ii) automorphism group of map is finite.
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Moduli spaces and birational geometry

Compactification of moduli spaces

There might be several different compactifications for one moduli space.
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Moduli spaces and birational geometry

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix A = (a1,a2, - ,an), where a; € QN (0,1].
Mg 4 = moduli space of genus g curve C with n smooth points
p1, P2, ", Pn such that
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Moduli spaces and birational geometry

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix A = (a1,a2, - ,an), where a; € QN (0,1].

W&A = moduli space of genus g curve C with n smooth points
p1, P2, , Pn such that

i) each p; have weight a;.
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Moduli spaces and birational geometry

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix A = (a1,a2, - ,an), where a; € QN (0,1].

W&A = moduli space of genus g curve C with n smooth points
p1, P2, , Pn such that

i) each p; have weight a;.

ii) for J C {1,2,---,n},

pp=p,=--=pj forjjel = Zajgl
jed
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Moduli spaces and birational geometry

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix A = (a1,a2, - ,an), where a; € QN (0,1].

W&A = moduli space of genus g curve C with n smooth points
p1, P2, , Pn such that

i) each p; have weight a;.

ii) for J C {1,2,---,n},

pp=p,=--=pj forjjel = Zajgl
jed

iii) we +ai1p1 + - - + anpn is ample.(it guarantees the finiteness of
automorphism group.)
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Moduli spaces and birational geometry

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix A = (a1,a2, - ,an), where a; € QN (0,1].

W&A = moduli space of genus g curve C with n smooth points
p1, P2, , Pn such that

i) each p; have weight a;.

ii) for J C {1,2,---,n},

pp=p,=--=pj forjjel = Zajgl
Jjed
iii) we +ai1p1 + - - + anpn is ample.(it guarantees the finiteness of
automorphism group.)

- called moduli space of weighted stable curves.
gives different compactification of M, ,.
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Moduli spaces and birational geometry

Compactification of moduli spaces

What are the relations between different compactifications? \
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Moduli spaces and birational geometry

Compactification of moduli spaces

What are the relations between different compactifications?

In our moduli problems, ng and W&A, we know that every

compactifications have same (open) dense subvariety M, p.
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Moduli spaces and birational geometry

Compactification of moduli spaces

What are the relations between different compactifications?

In our moduli problems, ng and W&A, we know that every
compactifications have same (open) dense subvariety M, p.

Definition
We say two algebraic varieties My, M, are birational if they have open
dense subsets U;, U respectively, such that U; = U>.

M DU =2 U, C My
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Moduli spaces and birational geometry

Compactification of moduli spaces

What are the relations between different compactifications?

In our moduli problems, ng and W&A, we know that every
compactifications have same (open) dense subvariety M, p.

Definition
We say two algebraic varieties My, M, are birational if they have open
dense subsets U;, U respectively, such that U; = U>.

M DU =2 U, C My

1) Is there any morphism M, 4 — Mg for two different weights A, B?
2) Is there any other construction of W&A?
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Moduli spaces and birational geometry

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 33 / 35



Moduli spaces and birational geometry

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010 33 / 35



Moduli spaces and birational geometry

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.
dim 1 case : done in 19th century, Answer : LizM,.

Han-Bom Moon (SNU) Introduction to moduli spaces 4 August 2010

33 / 35



Moduli spaces and birational geometry

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.
dim 1 case : done in 19th century, Answer : LizM,.

If dim 2, then for any X, by using algebro-geometrical surgery(called
blow-up), we can construct more complicate variety X.
But if we know X, then we know everything about X.
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Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.
dim 1 case : done in 19th century, Answer : LizM,.

If dim 2, then for any X, by using algebro-geometrical surgery(called
blow-up), we can construct more complicate variety X.
But if we know X, then we know everything about X.

Definition

A nonsingular variety X is called minimal if X is not a blow-up of

another variety X'.
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Moduli spaces and birational geometry

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.
dim 1 case : done in 19th century, Answer : LizM,.

If dim 2, then for any X, by using algebro-geometrical surgery(called
blow-up), we can construct more complicate variety X.
But if we know X, then we know everything about X.

Definition

A nonsingular variety X is called minimal if X is not a blow-up of
another variety X'.

So we want to classify minimal surfaces.

There are many works about classification of minimal surfaces(Enriques,
Kodaira, ...).
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Moduli spaces and birational geometry

Digression to minimal model program

Definition

The minimal model program(MMP) is an algorithm to find a minimal
variety(called minimal model) from given variety.
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Moduli spaces and birational geometry

Digression to minimal model program

Definition
The minimal model program(MMP) is an algorithm to find a minimal
variety(called minimal model) from given variety.

For higher dimensional case, there are some technical issues:

@ We have to allow (some mild) singularities to get a minimal variety.
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Digression to minimal model program

Definition
The minimal model program(MMP) is an algorithm to find a minimal
variety(called minimal model) from given variety.

For higher dimensional case, there are some technical issues:

@ We have to allow (some mild) singularities to get a minimal variety.
@ Because of a technical reason, we consider a minimal model of pair
(X, D) where X is a variety and D is a Q-linear combination of

codimension 1 subvarieties.
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Digression to minimal model program

Definition
The minimal model program(MMP) is an algorithm to find a minimal
variety(called minimal model) from given variety.

For higher dimensional case, there are some technical issues:

@ We have to allow (some mild) singularities to get a minimal variety.

@ Because of a technical reason, we consider a minimal model of pair
(X, D) where X is a variety and D is a Q-linear combination of
codimension 1 subvarieties.

© There is another kind of surgery, called flip.
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Digression to minimal model program

Definition

The minimal model program(MMP) is an algorithm to find a minimal
variety(called minimal model) from given variety.

For higher dimensional case, there are some technical issues:

@ We have to allow (some mild) singularities to get a minimal variety.

@ Because of a technical reason, we consider a minimal model of pair
(X, D) where X is a variety and D is a Q-linear combination of
codimension 1 subvarieties.

© There is another kind of surgery, called flip.

@ The existence of minimal model is still unknown except some
special cases(for example, 3-folds, log Fano, ...).
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Moduli spaces and birational geometry

Digression to minimal model program

Definition

The minimal model program(MMP) is an algorithm to find a minimal
variety(called minimal model) from given variety.

For higher dimensional case, there are some technical issues:

@ We have to allow (some mild) singularities to get a minimal variety.

@ Because of a technical reason, we consider a minimal model of pair
(X, D) where X is a variety and D is a Q-linear combination of
codimension 1 subvarieties.

© There is another kind of surgery, called flip.

@ The existence of minimal model is still unknown except some
special cases(for example, 3-folds, log Fano, ...).

@ If a minimal model exists, there is a unique (log) canonical model.
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Moduli spaces and birational geometry
Minimal model program for moduli spaces
Find log canonical models for given moduli spaces! \
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Moduli spaces and birational geometry
Minimal model program for moduli spaces
Find log canonical models for given moduli spaces! \

Consider My ,.
Let D be the subspace corresponded to singular curves.
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Moduli spaces and birational geometry

Minimal model program for moduli spaces

Find log canonical models for given moduli spaces!

Consider My ,.
Let D be the subspace corresponded to singular curves.

Theorem (Alexeev-Swinarski, Kiem-M)
Let « be a rational number satisfying % < «a < 1. Then the log
canonical model Mg n(c) for (Mg, aD) satisfies the following:
QIf ﬁ < a <1, then Mgn(a) = Mo a, where
-Aa = (eaa €ay ,Ea).
Q@ If-%.<a< ﬁ then Mo ,() = (P1)"//SL(2). where /| means
2
some kind of algebraic group quotient(GIT quotient).

Thank you!
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