

Introduction to moduli spaces

Han-Bom Moon

Department of Mathematical Sciences
Seoul National University

4 August 2010

Part I

What is a moduli space?

Moduli spaces

Warning : In this talk, there is NO rigorous definition of moduli spaces!
We will ignore all technical details.

Moduli spaces

Warning : In this talk, there is NO rigorous definition of moduli spaces!
We will ignore all technical details.

Roughly, a **moduli space** is a (topological, geometric, algebraic) space whose points are in one to one correspondence with geometric objects of one kind.

Toy examples

In \mathbb{R}^2 , an oriented line segment is determined by two end points.

Toy examples

In \mathbb{R}^2 , an oriented line segment is determined by two end points.
There is an one to one correspondence

$$\{\text{line segment in } \mathbb{R}^2\} \leftrightarrow \{((x_0, y_0), (x_1, y_1)) | x_0, x_1, y_0, y_1 \in \mathbb{R}\} \cong \mathbb{R}^4$$

Toy examples

In \mathbb{R}^2 , an oriented line segment is determined by two end points.
There is an one to one correspondence

$$\{\text{line segment in } \mathbb{R}^2\} \leftrightarrow \{((x_0, y_0), (x_1, y_1)) | x_0, x_1, y_0, y_1 \in \mathbb{R}\} \cong \mathbb{R}^4$$

So the moduli space of oriented line segments in \mathbb{R}^2 is \mathbb{R}^4 .

Toy examples

In \mathbb{R}^2 , an oriented line segment is determined by two end points.
There is an one to one correspondence

$$\{\text{line segment in } \mathbb{R}^2\} \leftrightarrow \{((x_0, y_0), (x_1, y_1)) | x_0, x_1, y_0, y_1 \in \mathbb{R}\} \cong \mathbb{R}^4$$

So the moduli space of oriented line segments in \mathbb{R}^2 is \mathbb{R}^4 .

If we don't want to allow 'length zero segment',

Toy examples

In \mathbb{R}^2 , an oriented line segment is determined by two end points.
There is an one to one correspondence

$$\{\text{line segment in } \mathbb{R}^2\} \leftrightarrow \{((x_0, y_0), (x_1, y_1)) | x_0, x_1, y_0, y_1 \in \mathbb{R}\} \cong \mathbb{R}^4$$

So the moduli space of oriented line segments in \mathbb{R}^2 is \mathbb{R}^4 .

If we don't want to allow 'length zero segment',
the moduli space M is $\mathbb{R}^4 - \{((x_0, y_0), (x_0, y_0))\} \cong \mathbb{R}^4 - \Delta \cong \mathbb{R}^4 - \mathbb{R}^2$.

Toy examples

In \mathbb{R}^2 , an oriented line segment is determined by two end points.
There is an one to one correspondence

$$\{\text{line segment in } \mathbb{R}^2\} \leftrightarrow \{((x_0, y_0), (x_1, y_1)) | x_0, x_1, y_0, y_1 \in \mathbb{R}\} \cong \mathbb{R}^4$$

So the moduli space of oriented line segments in \mathbb{R}^2 is \mathbb{R}^4 .

If we don't want to allow 'length zero segment',
the moduli space M is $\mathbb{R}^4 - \{((x_0, y_0), (x_0, y_0))\} \cong \mathbb{R}^4 - \Delta \cong \mathbb{R}^4 - \mathbb{R}^2$.

M is not only a set, but is a topological space.

Toy examples

Moreover, there is a **universal family** over moduli space M .

Toy examples

Moreover, there is a [universal family](#) over moduli space M .

Define $U \subset M \times \mathbb{R}^2 \cong \mathbb{R}^4 \times \mathbb{R}^2$ by

$$U = \{(x_0, y_0, x_1, y_1, (1-t)x_0 + tx_1, (1-t)y_0 + ty_1) | t \in [0, 1]\}$$

There is a natural map $\pi : U \rightarrow M$ defined by projection to first four coordinates.

Toy examples

Moreover, there is a [universal family](#) over moduli space M .

Define $U \subset M \times \mathbb{R}^2 \cong \mathbb{R}^4 \times \mathbb{R}^2$ by

$$U = \{(x_0, y_0, x_1, y_1, (1-t)x_0 + tx_1, (1-t)y_0 + ty_1) | t \in [0, 1]\}$$

There is a natural map $\pi : U \rightarrow M$ defined by projection to first four coordinates.

Q. Why U is a 'universal family'?

Toy examples

Moreover, there is a [universal family](#) over moduli space M .

Define $U \subset M \times \mathbb{R}^2 \cong \mathbb{R}^4 \times \mathbb{R}^2$ by

$$U = \{(x_0, y_0, x_1, y_1, (1-t)x_0 + tx_1, (1-t)y_0 + ty_1) | t \in [0, 1]\}$$

There is a natural map $\pi : U \rightarrow M$ defined by projection to first four coordinates.

Q. Why U is a ‘universal family’?

A. For every point $((x_0, y_0), (x_1, y_1)) = p \in M$,

$$\pi^{-1}(p) = \{((1-t)x_0 + tx_1, (1-t)y_0 + ty_1) | t \in [0, 1]\} \subset \mathbb{R}^2,$$

the oriented line segment corresponded p !

Definition of moduli space

Definition

A (fine) moduli space of some geometric objects consists of a moduli space M , a universal family U and a map $\pi : U \rightarrow M$ such that

- ① there is one to one correspondence between points of M and geometric objects we want to collect.
- ② for every point $p \in M$, $\pi^{-1}(p)$ is the corresponded object.

Toy examples

How about non-oriented segments?

Toy examples

How about non-oriented segments?

In this case, the moduli space of non-oriented line segments in \mathbb{R}^2 is

$$M' = (\mathbb{R}^4 - \Delta)/S_2$$

Toy examples

How about non-oriented segments?

In this case, the moduli space of non-oriented line segments in \mathbb{R}^2 is

$$M' = (\mathbb{R}^4 - \Delta)/S_2$$

Define an equivalence of oriented line segments as following:

$l_1, l_2 \subset \mathbb{R}^2$ are isomorphic if \exists a translation $\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that $\varphi(l_1) = l_2$.

Toy examples

How about non-oriented segments?

In this case, the moduli space of non-oriented line segments in \mathbb{R}^2 is

$$M' = (\mathbb{R}^4 - \Delta)/S_2$$

Define an equivalence of oriented line segments as following:

$l_1, l_2 \subset \mathbb{R}^2$ are isomorphic if \exists a translation $\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that $\varphi(l_1) = l_2$.

Then we can assume the starting point of line segment is the origin.

So in this case, the moduli space M'' of oriented line segments in \mathbb{R}^2 up to translation is

$$M'' = \mathbb{R}^2 - \{(0, 0)\}.$$

Toy examples

Q. What is the moduli space of unoriented line segments in \mathbb{R}^2 up to translation?

Toy examples

Q. What is the moduli space of unoriented line segments in \mathbb{R}^2 up to translation?

A. $(\mathbb{R}^2 - \{(0, 0)\})/S_2$.

Toy examples

Q. What is the moduli space of unoriented line segments in \mathbb{R}^2 up to translation?

A. $(\mathbb{R}^2 - \{(0, 0)\})/S_2$.

Q. What is the moduli space of oriented line segments in \mathbb{R}^2 up to isometry?

Toy examples

Q. What is the moduli space of unoriented line segments in \mathbb{R}^2 up to translation?

A. $(\mathbb{R}^2 - \{(0, 0)\})/S_2$.

Q. What is the moduli space of oriented line segments in \mathbb{R}^2 up to isometry?

A. $\mathbb{R}_{>0}$.

Toy examples

Q. What is the moduli space of unoriented line segments in \mathbb{R}^2 up to translation?

A. $(\mathbb{R}^2 - \{(0, 0)\})/S_2$.

Q. What is the moduli space of oriented line segments in \mathbb{R}^2 up to isometry?

A. $\mathbb{R}_{>0}$.

Q. What is the moduli space of oriented line segments in \mathbb{R}^2 up to affine transformation?

Toy examples

Q. What is the moduli space of unoriented line segments in \mathbb{R}^2 up to translation?

A. $(\mathbb{R}^2 - \{(0, 0)\})/S_2$.

Q. What is the moduli space of oriented line segments in \mathbb{R}^2 up to isometry?

A. $\mathbb{R}_{>0}$.

Q. What is the moduli space of oriented line segments in \mathbb{R}^2 up to affine transformation?

A. point.

Lesson : Equivalent relations between parameterized objects are very important!

More examples

Fix a vector space $V = \mathbb{R}^n$.

Geometric object want to parameterize : 1-dimensional subspace of V .

More examples

Fix a vector space $V = \mathbb{R}^n$.

Geometric object want to parameterize : 1-dimensional subspace of V .

Q. What is the moduli space of 1-dimensional subspace of V ?

More examples

Fix a vector space $V = \mathbb{R}^n$.

Geometric object want to parameterize : 1-dimensional subspace of V .

Q. What is the moduli space of 1-dimensional subspace of V ?

- every $v \in V - \{0\}$ determines a unique 1-dimensional subspace $L = \langle v \rangle \subset V$.
- $v, v' \in V - \{0\}$ determines the same subspace if $\exists c \in \mathbb{R}^*, v = cv'$.

More examples

Fix a vector space $V = \mathbb{R}^n$.

Geometric object want to parameterize : 1-dimensional subspace of V .

Q. What is the moduli space of 1-dimensional subspace of V ?

- every $v \in V - \{0\}$ determines a unique 1-dimensional subspace $L = \langle v \rangle \subset V$.
- $v, v' \in V - \{0\}$ determines the same subspace if $\exists c \in \mathbb{R}^*, v = cv'$.

\Rightarrow the moduli space of 1-dimensional subspace of V is $(V - \{0\})/\mathbb{R}^*$
 $= P(V)$, the **projective space**!

More examples

Moreover, there is the universal family (in this case, universal subspace) U over $P(V)$.

$$U = \{([L], v) \mid v \in L\} \subset P(V) \times V$$

$\pi : U \rightarrow P(V)$ is the natural projection.

More examples

Moreover, there is the universal family (in this case, universal subspace) U over $P(V)$.

$$U = \{([L], v) \mid v \in L\} \subset P(V) \times V$$

$\pi : U \rightarrow P(V)$ is the natural projection.

For $[L] \in P(V)$, $\pi^{-1}([L]) = \{([L], v) \mid v \in L\} \cong L$.

So $P(V)$ with $\pi : U \rightarrow P(V)$ is the fine moduli space of 1-dimensional subspaces of V .

More examples

More generally, we can think the moduli space of k -dimensional subspaces of V for $1 \leq k \leq n - 1$.

More examples

More generally, we can think the moduli space of k -dimensional subspaces of V for $1 \leq k \leq n - 1$.

The moduli space of this moduli problem is called [Grassmannian](#) $G(k, V)$.

More examples

More generally, we can think the moduli space of k -dimensional subspaces of V for $1 \leq k \leq n - 1$.

The moduli space of this moduli problem is called [Grassmannian](#) $G(k, V)$.

$$G(1, V) \cong$$

More examples

More generally, we can think the moduli space of k -dimensional subspaces of V for $1 \leq k \leq n - 1$.

The moduli space of this moduli problem is called [Grassmannian](#) $G(k, V)$.

$G(1, V) \cong P(V)$ by definition.

More examples

More generally, we can think the moduli space of k -dimensional subspaces of V for $1 \leq k \leq n - 1$.

The moduli space of this moduli problem is called [Grassmannian](#) $G(k, V)$.

$G(1, V) \cong P(V)$ by definition.

Exercise : $G(n - 1, V) \cong P(V)$.

More examples

More generally, we can think the moduli space of k -dimensional subspaces of V for $1 \leq k \leq n - 1$.

The moduli space of this moduli problem is called [Grassmannian](#) $G(k, V)$.

$G(1, V) \cong P(V)$ by definition.

Exercise : $G(n - 1, V) \cong P(V)$.

Sketch : Fix a positive definite inner product on V .

Define a map

$$\begin{aligned} P(V) &\rightarrow G(n - 1, V) \\ L &\mapsto L^\perp \end{aligned}$$

Check this map is bijective.

Some technical issues

If we study moduli spaces in algebraic geometry, there are two important assumptions.

- Usually, we use algebraic closed field \mathbb{C} instead of \mathbb{R} .
- We hardly use affine space(\mathbb{C}^n).

Usually we use projective space \mathbb{P}^n .

It is a compactification of \mathbb{C}^n .

Some famous moduli spaces

M_g : moduli space of nonsingular curves (Riemann surfaces) of genus g up to isomorphism.

If $g \geq 2$, it is well-known that the dimension of M_g is $3g - 3$.

Some famous moduli spaces

M_g : moduli space of nonsingular curves (Riemann surfaces) of genus g up to isomorphism.

If $g \geq 2$, it is well-known that the dimension of M_g is $3g - 3$.

$M_{g,n}$: moduli space of nonsingular curves of genus g with n distinct points, up to isomorphism.

If (1) $g \geq 2$ or (2) $g = 1$ and $n \geq 1$ or (3) $g = 0$ and $n \geq 3$, then the dimension is $3g - 3 + n$.

Some famous moduli spaces

M_g : moduli space of nonsingular curves (Riemann surfaces) of genus g up to isomorphism.

If $g \geq 2$, it is well-known that the dimension of M_g is $3g - 3$.

$M_{g,n}$: moduli space of nonsingular curves of genus g with n distinct points, up to isomorphism.

If (1) $g \geq 2$ or (2) $g = 1$ and $n \geq 1$ or (3) $g = 0$ and $n \geq 3$, then the dimension is $3g - 3 + n$.

$M_g(\mathbb{P}^r, d)$: moduli space of nonsingular curves of genus g in a fixed projective space \mathbb{P}^r with degree d .

Some famous moduli spaces

M_g : moduli space of nonsingular curves (Riemann surfaces) of genus g up to isomorphism.

If $g \geq 2$, it is well-known that the dimension of M_g is $3g - 3$.

$M_{g,n}$: moduli space of nonsingular curves of genus g with n distinct points, up to isomorphism.

If (1) $g \geq 2$ or (2) $g = 1$ and $n \geq 1$ or (3) $g = 0$ and $n \geq 3$, then the dimension is $3g - 3 + n$.

$M_g(\mathbb{P}^r, d)$: moduli space of nonsingular curves of genus g in a fixed projective space \mathbb{P}^r with degree d .

C : a nonsingular curve of genus $g \geq 2$.

$M(C, r, \alpha)$: moduli space of stable vector bundles of rank r and first Chern class α .

Part II

Why we study moduli spaces?

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit higher dimensional variety.

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit higher dimensional variety.

For example, in \mathbb{C}^{1000} , a zero set of 1,000,000 polynomials defines an algebraic object...

But what is the dimension of it?

Is it smooth? compact? connected? nonempty?

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit higher dimensional variety.

For example, in \mathbb{C}^{1000} , a zero set of 1,000,000 polynomials defines an algebraic object...

But what is the dimension of it?

Is it smooth? compact? connected? nonempty?

In many cases, a moduli space of some algebraic objects has an **algebraic structure**(become variety, scheme, stack...). And there are machineries to get some geometric information of moduli spaces(dimension, smoothness, compactness, ...).

1. Examples of higher dimensional variety

In algebraic geometry, it is extremely difficult to construct an explicit higher dimensional variety.

For example, in \mathbb{C}^{1000} , a zero set of 1,000,000 polynomials defines an algebraic object...

But what is the dimension of it?

Is it smooth? compact? connected? nonempty?

In many cases, a moduli space of some algebraic objects has an **algebraic structure**(become variety, scheme, stack...). And there are machineries to get some geometric information of moduli spaces(dimension, smoothness, compactness, ...).

So moduli spaces gives a plenty of examples of relatively concrete but not obvious higher dimensional algebraic objects.

2. Answers for classical geometric questions

We recall some classical geometric questions.

Question

How many curves satisfying given conditions are?

2. Answers for classical geometric questions

We recall some classical geometric questions.

Question

How many curves satisfying given conditions are?

Examples:

- How many lines in plane across given 2 points?

2. Answers for classical geometric questions

We recall some classical geometric questions.

Question

How many curves satisfying given conditions are?

Examples:

- How many lines in plane across given 2 points?
- How many conics in plane across given 5 points?

2. Answers for classical geometric questions

We recall some classical geometric questions.

Question

How many curves satisfying given conditions are?

Examples:

- How many lines in plane across given 2 points?
- How many conics in plane across given 5 points?
- How many lines in 3-dim space intersect given 4 lines?

2. Answers for classical geometric questions

We recall some classical geometric questions.

Question

How many curves satisfying given conditions are?

Examples:

- How many lines in plane across given 2 points?
- How many conics in plane across given 5 points?
- How many lines in 3-dim space intersect given 4 lines?

Surprisingly, the answer of last question is neither of 0, 1 nor ∞ .

Lines in \mathbb{P}^3

Consider the set of all lines in \mathbb{P}^3

Lines in \mathbb{P}^3

Consider the set of all lines in \mathbb{P}^3

= the set of all pair of linearly independent homogeneous linear polynomials

Lines in \mathbb{P}^3

Consider the set of all lines in \mathbb{P}^3

= the set of all pair of linearly independent homogeneous linear polynomials

= the set of all 2-dim subspaces of $V \cong \mathbb{C}^4$

Lines in \mathbb{P}^3

Consider the set of all lines in \mathbb{P}^3

- = the set of all pair of linearly independent homogeneous linear polynomials
- = the set of all 2-dim subspaces of $V \cong \mathbb{C}^4$
- = Grassmannian $G(2, V)$.

Lines in \mathbb{P}^3

Consider the set of all lines in \mathbb{P}^3

= the set of all pair of linearly independent homogeneous linear polynomials

= the set of all 2-dim subspaces of $V \cong \mathbb{C}^4$

= Grassmannian $G(2, V)$.

$U := \{(L, v) \in G(2, V) \times V \mid v \in L\} \dots$ universal family.

$U^* := \{L, v) \in G(2, V) \times V \mid v \in L, v \neq 0\} \subset U$

Lines in \mathbb{P}^3

Consider the set of all lines in \mathbb{P}^3

- = the set of all pair of linearly independent homogeneous linear polynomials
- = the set of all 2-dim subspaces of $V \cong \mathbb{C}^4$
- = Grassmannian $G(2, V)$.

$U := \{(L, v) \in G(2, V) \times V \mid v \in L\} \dots$ universal family.

$U^* := \{L, v) \in G(2, V) \times V \mid v \in L, v \neq 0\} \subset U$

Exist two natural maps:

$$\begin{aligned} \pi : \quad U^* &\rightarrow G(2, V) \\ (L, v) &\mapsto L \end{aligned}$$

$$\begin{aligned} f : \quad U^* &\rightarrow V \rightarrow \mathbb{P}^3 \\ (L, v) &\mapsto v \mapsto \langle v \rangle \end{aligned}$$

Lines in \mathbb{P}^3

$$\begin{array}{ccc} U^* & \xrightarrow{f} & \mathbb{P}^3 \\ \pi \downarrow & & \\ G(2, V) & & \end{array}$$

Lines in \mathbb{P}^3

$$\begin{array}{ccc} U^* & \xrightarrow{f} & \mathbb{P}^3 \\ \pi \downarrow & & \\ G(2, V) & & \end{array}$$

L_i , $1 \leq i \leq 4$: lines in \mathbb{P}^3 .

Lines in \mathbb{P}^3

$$\begin{array}{ccc} U^* & \xrightarrow{f} & \mathbb{P}^3 \\ \pi \downarrow & & \\ G(2, V) & & \end{array}$$

L_i , $1 \leq i \leq 4$: lines in \mathbb{P}^3 .

$f^{-1}(L_i)$: set of pairs (L, v) such that $v \in L_i$ and $v \in L$.
= set of pairs (L, v) such that $v \in L \cap L_i$.

Lines in \mathbb{P}^3

$$\begin{array}{ccc} U^* & \xrightarrow{f} & \mathbb{P}^3 \\ \pi \downarrow & & \\ G(2, V) & & \end{array}$$

L_i , $1 \leq i \leq 4$: lines in \mathbb{P}^3 .

$f^{-1}(L_i)$: set of pairs (L, v) such that $v \in L_i$ and $v \in L$.
 = set of pairs (L, v) such that $v \in L \cap L_i$.

$\pi(f^{-1}(L_i))$: set of lines in \mathbb{P}^3 meets L_i .

Lines in \mathbb{P}^3

$$\begin{array}{ccc} U^* & \xrightarrow{f} & \mathbb{P}^3 \\ \pi \downarrow & & \\ G(2, V) & & \end{array}$$

L_i , $1 \leq i \leq 4$: lines in \mathbb{P}^3 .

$f^{-1}(L_i)$: set of pairs (L, v) such that $v \in L_i$ and $v \in L$.
 $=$ set of pairs (L, v) such that $v \in L \cap L_i$.

$\pi(f^{-1}(L_i))$: set of lines in \mathbb{P}^3 meets L_i .

$$\left| \bigcap_{i=1}^4 \pi(f^{-1}(L_i)) \right|$$

is what we want!

Lines in \mathbb{P}^3

Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.

Lines in \mathbb{P}^3

Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.

σ_i : cohomology class corresponded to $\pi(f^{-1}(L_i))$.

Lines in \mathbb{P}^3

Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.

σ_i : cohomology class corresponded to $\pi(f^{-1}(L_i))$.

In cohomology ring of $G(2, V)$, $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4$.

Lines in \mathbb{P}^3

Change these things into the language of cohomology:
Cohomology ring of Grassmannian is well-known.

σ_i : cohomology class corresponded to $\pi(f^{-1}(L_i))$.

In cohomology ring of $G(2, V)$, $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4$.

$$|\bigcap_{i=1}^4 \pi(f^{-1}(L_i))| = \int_{G(2, V)} \sigma_1^4 = 2.$$

There exist exactly 2 lines in \mathbb{P}^3 meet 4 general lines.

Lines on a Calabi-Yau 3-fold

Definition

A **quintic threefold** is a nonsingular threefold in \mathbb{P}^4 defined by single homogeneous equation of degree 5.

Lines on a Calabi-Yau 3-fold

Definition

A **quintic threefold** is a nonsingular threefold in \mathbb{P}^4 defined by single homogeneous equation of degree 5.

This is an example of Calabi-Yau threefold appears in string theory.

Lines on a Calabi-Yau 3-fold

Definition

A **quintic threefold** is a nonsingular threefold in \mathbb{P}^4 defined by single homogeneous equation of degree 5.

This is an example of Calabi-Yau threefold appears in string theory.

Question

How many lines in general quintic threefold?

Lines on a Calabi-Yau 3-fold

Consider the moduli space of lines in \mathbb{P}^4 : $Gr(2, V)$ where $V \cong \mathbb{C}^5$.

Lines on a Calabi-Yau 3-fold

Consider the moduli space of lines in \mathbb{P}^4 : $Gr(2, V)$ where $V \cong \mathbb{C}^5$.
Let U be the universal vector space over $Gr(2, V)$,
and let U^* be the complement of zero section.

We have a following diagram

$$\begin{array}{ccc} U^* & \xrightarrow{f} & \mathbb{P}^4 \\ \pi \downarrow & & \\ G(2, V). & & \end{array}$$

as before.

Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on $Gr(2, V)$ such that
for $L \in Gr(2, V)$, the fiber W_L is the vector space of degree 5
homogeneous polynomials over $L \cong \mathbb{P}^1$

Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on $Gr(2, V)$ such that
for $L \in Gr(2, V)$, the fiber W_L is the vector space of degree 5
homogeneous polynomials over $L \cong \mathbb{P}^1$
... rank 6.

Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on $Gr(2, V)$ such that
for $L \in Gr(2, V)$, the fiber W_L is the vector space of degree 5
homogeneous polynomials over $L \cong \mathbb{P}^1$
... rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous
polynomial g of degree 5.

Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on $Gr(2, V)$ such that
for $L \in Gr(2, V)$, the fiber W_L is the vector space of degree 5
homogeneous polynomials over $L \cong \mathbb{P}^1$
... rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous
polynomial g of degree 5.

Then for each line $L \subset \mathbb{P}^4$, we can restrict g to the line L and get an
element g_L of W_L .

Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on $Gr(2, V)$ such that
for $L \in Gr(2, V)$, the fiber W_L is the vector space of degree 5
homogeneous polynomials over $L \cong \mathbb{P}^1$
... rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous
polynomial g of degree 5.

Then for each line $L \subset \mathbb{P}^4$, we can restrict g to the line L and get an
element g_L of W_L .

Moreover, $g_L = 0$ iff L is in the zero set $Z(g) = X$.

Lines on a Calabi-Yau 3-fold

Idea : Make a vector bundle W on $Gr(2, V)$ such that
for $L \in Gr(2, V)$, the fiber W_L is the vector space of degree 5
homogeneous polynomials over $L \cong \mathbb{P}^1$
... rank 6.

Let our quintic 3-fold X is defined by a degree 5 homogeneous
polynomial g of degree 5.

Then for each line $L \subset \mathbb{P}^4$, we can restrict g to the line L and get an
element g_L of W_L .

Moreover, $g_L = 0$ iff L is in the zero set $Z(g) = X$.

So we have a section s of W , and the number of lines in $X = |Z(s)|$.

Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

$$\begin{array}{ccc} \mathbb{P}(U) & \xrightarrow{f} & \mathbb{P}^4 \\ \pi \downarrow & & \\ G(2, V). & & \end{array}$$

Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

$$\begin{array}{ccc} \mathbb{P}(U) & \xrightarrow{f} & \mathbb{P}^4 \\ \pi \downarrow & & \\ G(2, V). & & \end{array}$$

$\mathcal{O}(5)$: a line bundle such that one of section is g .

Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

$$\begin{array}{ccc} \mathbb{P}(U) & \xrightarrow{f} & \mathbb{P}^4 \\ \pi \downarrow & & \\ G(2, V). & & \end{array}$$

$\mathcal{O}(5)$: a line bundle such that one of section is g .

$$W = \pi_* f^* \mathcal{O}(5).$$

Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

$$\begin{array}{ccc} \mathbb{P}(U) & \xrightarrow{f} & \mathbb{P}^4 \\ \pi \downarrow & & \\ G(2, V). & & \end{array}$$

$\mathcal{O}(5)$: a line bundle such that one of section is g .

$$W = \pi_* f^* \mathcal{O}(5).$$

The number $|Z(s)|$ is equal to

$$\int_{G(2, V)} c_6(\pi_* f^* \mathcal{O}(5))$$

Lines on a Calabi-Yau 3-fold

Algebraic construction of W :

$$\begin{array}{ccc} \mathbb{P}(U) & \xrightarrow{f} & \mathbb{P}^4 \\ \pi \downarrow & & \\ G(2, V). & & \end{array}$$

$\mathcal{O}(5)$: a line bundle such that one of section is g .

$$W = \pi_* f^* \mathcal{O}(5).$$

The number $|Z(s)|$ is equal to

$$\int_{G(2, V)} c_6(\pi_* f^* \mathcal{O}(5))$$

By using Riemann-Roch theorem, we can compute this number : 2,875.

Lines on a Calabi-Yau 3-fold

Clemens' conjecture

Let X be a general quintic threefold. For every $d \in \mathbb{N}$, there exist only finitely many rational curves of degree d on X .

Lines on a Calabi-Yau 3-fold

Clemens' conjecture

Let X be a general quintic threefold. For every $d \in \mathbb{N}$, there exist only finitely many rational curves of degree d on X .

It is proved for $n \leq 7$.

degree	number of curves
1	2,875
2	609,250
3	317,206,375
4	242,467,530,000
5	22,930,588,887,625
6	248,249,742,118,022,000
7	295,091,050,570,845,659,250

3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1. Conversely, every nonsingular genus 1 curve is isomorphic to a plane cubic curve.

3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1. Conversely, every nonsingular genus 1 curve is isomorphic to a plane cubic curve.

Moreover, there is an [universal equation](#) with a free variable for genus 1 curve.

$$y^2 = x(x - 1)(x - a)$$

3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1. Conversely, every nonsingular genus 1 curve is isomorphic to a plane cubic curve.

Moreover, there is an [universal equation](#) with a free variable for genus 1 curve.

$$y^2 = x(x - 1)(x - a)$$

This is a universal equation in the sense that

- for any genus 1 nonsingular curve C , we can find $a \in \mathbb{C}$ such that C is isomorphic to plane cubic curve defined by $y^2 = x(x - 1)(x - a)$.

3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1. Conversely, every nonsingular genus 1 curve is isomorphic to a plane cubic curve.

Moreover, there is an [universal equation](#) with a free variable for genus 1 curve.

$$y^2 = x(x - 1)(x - a)$$

This is a universal equation in the sense that

- for any genus 1 nonsingular curve C , we can find $a \in \mathbb{C}$ such that C is isomorphic to plane cubic curve defined by $y^2 = x(x - 1)(x - a)$.
- except $a \neq 0, 1$, the equation defines a nonsingular genus 1 curve.

3. Can learn about the objects parameterized

It is well-known that a nonsingular plane cubic curve has genus 1. Conversely, every nonsingular genus 1 curve is isomorphic to a plane cubic curve.

Moreover, there is an [universal equation](#) with a free variable for genus 1 curve.

$$y^2 = x(x - 1)(x - a)$$

This is a universal equation in the sense that

- for any genus 1 nonsingular curve C , we can find $a \in \mathbb{C}$ such that C is isomorphic to plane cubic curve defined by $y^2 = x(x - 1)(x - a)$.
- except $a \neq 0, 1$, the equation defines a nonsingular genus 1 curve.

For genus 2, the following equation is a universal equation.

$$y^2 = x^6 + a_5x^5 + \cdots + a_1x + a_0.$$

Existence of almost universal equations

Question

For any genus g , can we find a universal(or an almost universal) equation(or equations) with almost free variable for genus g curves?

Existence of almost universal equations

Question

For any genus g , can we find a universal(or an almost universal) equation(or equations) with almost free variable for genus g curves?

Theorem

*If $g \geq 22$, then it is **impossible** to construct almost universal equations.*

This is an immediate corollary of following theorem:

Existence of almost universal equations

Question

For any genus g , can we find a universal (or an almost universal) equation (or equations) with almost free variable for genus g curves?

Theorem

*If $g \geq 22$, then it is **impossible** to construct almost universal equations.*

This is an immediate corollary of following theorem:

Theorem (Harris-Mumford, Farkas)

For $g \geq 22$, the moduli space M_g is of general type.

4. Essential elements in modern mathematics and physics

For a smooth projective variety X , we can construct huge ring structure $QH^*(X)$, called quantum cohomology.

4. Essential elements in modern mathematics and physics

For a smooth projective variety X , we can construct huge ring structure $QH^*(X)$, called [quantum cohomology](#).

It contains all informations of usual cohomology ring $H^*(X)$, and in some sense, $QH^*(X)$ is a deformation or twisting of $H^*(X)$.

4. Essential elements in modern mathematics and physics

For a smooth projective variety X , we can construct huge ring structure $QH^*(X)$, called [quantum cohomology](#).

It contains all informations of usual cohomology ring $H^*(X)$, and in some sense, $QH^*(X)$ is a deformation or twisting of $H^*(X)$.

For the construction of $QH^*(X)$, we need the intersection theory of moduli space of stable maps $\overline{M}_{0,n}(X, \beta)$ [... Gromov-Witten invariant](#).

4. Essential elements in modern mathematics and physics

For a smooth projective variety X , we can construct huge ring structure $QH^*(X)$, called [quantum cohomology](#).

It contains all informations of usual cohomology ring $H^*(X)$, and in some sense, $QH^*(X)$ is a deformation or twisting of $H^*(X)$.

For the construction of $QH^*(X)$, we need the intersection theory of moduli space of stable maps $\overline{M}_{0,n}(X, \beta)$ [... Gromov-Witten invariant](#).

The Gromov-Witten invariant and quantum cohomology are parts of [superstring theory](#).

Part III

Moduli spaces and birational geometry

Compactification of moduli spaces

Many interesting moduli spaces are not compact.

Compactification of moduli spaces

Many interesting moduli spaces are not compact.

Ex) M_g , $M_{g,n}$, $M_g(\mathbb{P}^r, d)$, \dots

Compactification of moduli spaces

Many interesting moduli spaces are not compact.

Ex) M_g , $M_{g,n}$, $M_g(\mathbb{P}^r, d)$, \dots

We want to compactify our moduli spaces.

Compactification of moduli spaces

Many interesting moduli spaces are not compact.

Ex) M_g , $M_{g,n}$, $M_g(\mathbb{P}^r, d)$, \dots

We want to compactify our moduli spaces.

Also, we want this compactified space is also a moduli space for some moduli problem.

Compactification of moduli spaces

Many interesting moduli spaces are not compact.

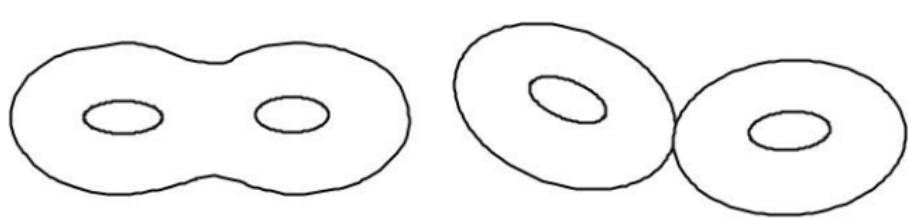
Ex) M_g , $M_{g,n}$, $M_g(\mathbb{P}^r, d), \dots$

We want to compactify our moduli spaces.

Also, we want this compactified space is also a moduli space for some moduli problem.

Example :

1) \overline{M}_g : moduli space of curves of (arithmetic) genus g with nodal singularities which has finite automorphism group.



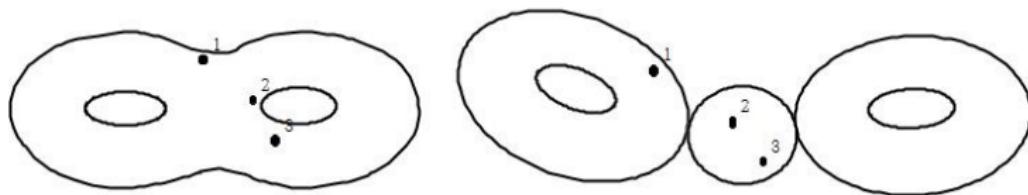
Compactification of moduli spaces

2) $\overline{M}_{g,n}$ moduli space of curves of (arithmetic) genus g with n distinct **smooth** points, with nodal singularities which has finite automorphism group.



Compactification of moduli spaces

2) $\overline{M}_{g,n}$ moduli space of curves of (arithmetic) genus g with n distinct smooth points, with nodal singularities which has finite automorphism group.



3) Compactify $M_g(\mathbb{P}^r, d) \cdots$ regard $C \subset \mathbb{P}^r$ as an injective morphism $f : C \hookrightarrow \mathbb{P}^r$ from smooth curve C of genus g .

$\overline{M}_g(\mathbb{P}^r, d)$: moduli space of maps from a nodal curve of (arithmetic) genus g to \mathbb{P}^r (called moduli space of stable maps), such that

- i) degree of map is d ,
- ii) automorphism group of map is finite.

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix $\mathcal{A} = (a_1, a_2, \dots, a_n)$, where $a_i \in \mathbb{Q} \cap (0, 1]$.

$\overline{M}_{g, \mathcal{A}}$ = moduli space of genus g curve C with n smooth points p_1, p_2, \dots, p_n such that

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix $\mathcal{A} = (a_1, a_2, \dots, a_n)$, where $a_i \in \mathbb{Q} \cap (0, 1]$.

$\overline{M}_{g, \mathcal{A}}$ = moduli space of genus g curve C with n smooth points

p_1, p_2, \dots, p_n such that

i) each p_i have weight a_i .

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix $\mathcal{A} = (a_1, a_2, \dots, a_n)$, where $a_i \in \mathbb{Q} \cap (0, 1]$.

$\overline{M}_{g, \mathcal{A}}$ = moduli space of genus g curve C with n smooth points

p_1, p_2, \dots, p_n such that

- i) each p_i have weight a_i .
- ii) for $J \subset \{1, 2, \dots, n\}$,

$$p_{j_1} = p_{j_2} = \dots = p_{j_k} \text{ for } j_i \in J \Rightarrow \sum_{j \in J} a_j \leq 1$$

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix $\mathcal{A} = (a_1, a_2, \dots, a_n)$, where $a_i \in \mathbb{Q} \cap (0, 1]$.

$\overline{M}_{g, \mathcal{A}}$ = moduli space of genus g curve C with n smooth points

p_1, p_2, \dots, p_n such that

- i) each p_i have weight a_i .
- ii) for $J \subset \{1, 2, \dots, n\}$,

$$p_{j_1} = p_{j_2} = \dots = p_{j_k} \text{ for } j_i \in J \Rightarrow \sum_{j \in J} a_j \leq 1$$

- iii) $\omega_C + a_1 p_1 + \dots + a_n p_n$ is ample. (it guarantees the finiteness of automorphism group.)

Compactification of moduli spaces

There might be several different compactifications for one moduli space.

Fix $\mathcal{A} = (a_1, a_2, \dots, a_n)$, where $a_i \in \mathbb{Q} \cap (0, 1]$.

$\overline{M}_{g, \mathcal{A}}$ = moduli space of genus g curve C with n smooth points

p_1, p_2, \dots, p_n such that

- i) each p_i have weight a_i .
- ii) for $J \subset \{1, 2, \dots, n\}$,

$$p_{j_1} = p_{j_2} = \dots = p_{j_k} \text{ for } j_i \in J \Rightarrow \sum_{j \in J} a_j \leq 1$$

- iii) $\omega_C + a_1 p_1 + \dots + a_n p_n$ is ample. (it guarantees the finiteness of automorphism group.)

... called moduli space of [weighted stable curves](#).

gives different compactification of $M_{g, n}$.

Compactification of moduli spaces

Question

What are the relations between different compactifications?

Compactification of moduli spaces

Question

What are the relations between different compactifications?

In our moduli problems, $\overline{M}_{g,n}$ and $\overline{M}_{g,\mathcal{A}}$, we know that every compactifications have same (open) dense subvariety $M_{g,n}$.

Compactification of moduli spaces

Question

What are the relations between different compactifications?

In our moduli problems, $\overline{M}_{g,n}$ and $\overline{M}_{g,A}$, we know that every compactifications have same (open) dense subvariety $M_{g,n}$.

Definition

We say two algebraic varieties M_1, M_2 are **birational** if they have open dense subsets U_1, U_2 respectively, such that $U_1 \cong U_2$.

$$M_1 \supset U_1 \cong U_2 \subset M_2$$

Compactification of moduli spaces

Question

What are the relations between different compactifications?

In our moduli problems, $\overline{M}_{g,n}$ and $\overline{M}_{g,\mathcal{A}}$, we know that every compactifications have same (open) dense subvariety $M_{g,n}$.

Definition

We say two algebraic varieties M_1, M_2 are **birational** if they have open dense subsets U_1, U_2 respectively, such that $U_1 \cong U_2$.

$$M_1 \supset U_1 \cong U_2 \subset M_2$$

- 1) Is there any morphism $\overline{M}_{g,\mathcal{A}} \rightarrow \overline{M}_{g,\mathcal{B}}$ for two different weights \mathcal{A}, \mathcal{B} ?
- 2) Is there any other construction of $\overline{M}_{g,\mathcal{A}}$?

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.

dim 1 case : done in 19th century, Answer : $\sqcup_g M_g$.

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.

dim 1 case : done in 19th century, Answer : $\sqcup_g M_g$.

If dim 2, then for any X , by using algebro-geometrical surgery (called **blow-up**), we can construct more complicate variety \tilde{X} .

But if we know X , then we know everything about \tilde{X} .

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.

dim 1 case : done in 19th century, Answer : $\sqcup_g M_g$.

If dim 2, then for any X , by using algebro-geometrical surgery (called **blow-up**), we can construct more complicate variety \tilde{X} .

But if we know X , then we know everything about \tilde{X} .

Definition

A nonsingular variety X is called **minimal** if X is not a blow-up of another variety X' .

Digression to minimal model program

Ultimate goal of algebraic geometry : classify all algebraic varieties.

Consider nonsingular projective variety.

dim 1 case : done in 19th century, Answer : $\sqcup_g M_g$.

If dim 2, then for any X , by using algebro-geometrical surgery(called **blow-up**), we can construct more complicate variety \tilde{X} .

But if we know X , then we know everything about \tilde{X} .

Definition

A nonsingular variety X is called **minimal** if X is not a blow-up of another variety X' .

So we want to classify **minimal** surfaces.

There are many works about classification of minimal surfaces(Enriques, Kodaira, ...).

Digression to minimal model program

Definition

The **minimal model program**(MMP) is an algorithm to find a minimal variety(called **minimal model**) from given variety.

Digression to minimal model program

Definition

The **minimal model program(MMP)** is an algorithm to find a minimal variety(called **minimal model**) from given variety.

For higher dimensional case, there are some technical issues:

- ① We have to allow (some mild) singularities to get a minimal variety.

Digression to minimal model program

Definition

The **minimal model program(MMP)** is an algorithm to find a minimal variety(called **minimal model**) from given variety.

For higher dimensional case, there are some technical issues:

- ① We have to allow (some mild) singularities to get a minimal variety.
- ② Because of a technical reason, we consider a minimal model of pair (X, D) where X is a variety and D is a \mathbb{Q} -linear combination of codimension 1 subvarieties.

Digression to minimal model program

Definition

The **minimal model program(MMP)** is an algorithm to find a minimal variety(called **minimal model**) from given variety.

For higher dimensional case, there are some technical issues:

- ① We have to allow (some mild) **singularities** to get a minimal variety.
- ② Because of a technical reason, we consider a minimal model of pair (X, D) where X is a variety and D is a \mathbb{Q} -linear combination of codimension 1 subvarieties.
- ③ There is another kind of surgery, called **flip**.

Digression to minimal model program

Definition

The **minimal model program(MMP)** is an algorithm to find a minimal variety(called **minimal model**) from given variety.

For higher dimensional case, there are some technical issues:

- ① We have to allow (some mild) **singularities** to get a minimal variety.
- ② Because of a technical reason, we consider a minimal model of pair (X, D) where X is a variety and D is a \mathbb{Q} -linear combination of codimension 1 subvarieties.
- ③ There is another kind of surgery, called **flip**.
- ④ The existence of minimal model is still unknown except some special cases(for example, 3-folds, log Fano, ...).

Digression to minimal model program

Definition

The **minimal model program (MMP)** is an algorithm to find a minimal variety (called **minimal model**) from given variety.

For higher dimensional case, there are some technical issues:

- ① We have to allow (some mild) **singularities** to get a minimal variety.
- ② Because of a technical reason, we consider a minimal model of pair (X, D) where X is a variety and D is a \mathbb{Q} -linear combination of codimension 1 subvarieties.
- ③ There is another kind of surgery, called **flip**.
- ④ The existence of minimal model is still unknown except some special cases (for example, 3-folds, log Fano, ...).
- ⑤ If a minimal model exists, there is a unique (log) **canonical model**.

Minimal model program for moduli spaces

Question

Find log canonical models for given moduli spaces!

Minimal model program for moduli spaces

Question

Find log canonical models for given moduli spaces!

Consider $\overline{M}_{0,n}$.

Let D be the subspace corresponded to singular curves.

Minimal model program for moduli spaces

Question

Find log canonical models for given moduli spaces!

Consider $\overline{M}_{0,n}$.

Let D be the subspace corresponded to singular curves.

Theorem (Alexeev-Swinarski, Kiem-M)

Let α be a rational number satisfying $\frac{2}{n-1} < \alpha \leq 1$. Then the log canonical model $\overline{M}_{0,n}(\alpha)$ for $(\overline{M}_{0,n}, \alpha D)$ satisfies the following:

- ① If $\frac{2}{\lfloor \frac{n}{2} \rfloor + 1} < \alpha \leq 1$, then $\overline{M}_{0,n}(\alpha) \cong \overline{M}_{0, \mathcal{A}_\alpha}$ where $\mathcal{A}_\alpha = (\epsilon_\alpha, \epsilon_\alpha, \dots, \epsilon_\alpha)$.
- ② If $\frac{2}{n-1} < \alpha \leq \frac{2}{\lfloor \frac{n}{2} \rfloor + 1}$, then $\overline{M}_{0,n}(\alpha) \cong (\mathbb{P}^1)^n // SL(2)$. where $//$ means some kind of algebraic group quotient (GIT quotient).

Thank you!